Construction of an Upper Crustal Reservoir by Lateral Magma Propagation: New insights from Geochronological Data of La Gloria Pluton, Central Chile

Friday, 19 December 2014
Francisco J Gutiérrez1, Marcel Guillong2, Italo J Payacán1, Alvaro Aravena1, Olivier Bachmann2 and Miguel Angel Parada3, (1)University of Chile, Chile, Geology/AMTC/CEGA, Santiago, Chile, (2)ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, (3)Andean Geothermal Center of Excellence, Santiago, Chile
La Gloria Pluton (LGP) is a 10 Ma shallow elongated NNW reservoir of 17 km length and 4-6 km width as part of a NS trend of Miocene plutons in Central Chile. New LA-ICPMS U-Pb ages in zircons of La Gloria Pluton indicate that crystallization occurs mostly within an interval between 11.2 to 10 Ma, with southeastward decreasing ages. Zircon crystallization ages are consistently older at the boundaries of the pluton than at the center for a given cross-section. At regional scale the ages of LGP follows a plutonic trend of southward decreasing age: Estero Yerba Loca (10 Ma) and San Francisco Batholith (SFB), in the north; and Cerro Mesón Alto (12.5 Ma) and San Gabriel (SG; 13 Ma), in the south. Both regional and local (within-LGP) age trends suggest: 1) a progressive northward migration of the main deep magmatic source during the Miocene; and 2) a southeastward lateral propagation of the magma during the reservoir construction. The lateral propagation of the magma is also supported by subhorizontal mineral and magnetic lineations with a preferred NNW orientation within LGP.

The within-pluton age distribution and internal configuration suggest incremental construction with horizontal propagation of magma within channels. Because the lateral migration of the magma play an important role on the thermal structure of the cooling pluton we perform numerical simulations that account for reheating caused by refilling along the axial core of the pluton . We speculate that pre-existing shallow crustal structures (faults and folds) would allow lateral magma canalization, particularly between the lower highly deformed volcanic Abanico Fm. and the less deformed overlaying volcanic Farellones Fm. The pluton distribution and internal organization in and around LGP suggest incremental construction with vertical and horizontal migration of magma within channels and reservoirs, yielding plutonic complexes with protracted ages and elongated geometries.