H33L-01:
River Networks As Ecological Corridors for Species, Populations and Pathogens of Water-Borne Disease

Wednesday, 17 December 2014: 1:45 PM
Andrea Rinaldo, EPFL Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland; Università di Padova (Italy), ICEA, Padova, Italy
Abstract:
River basins are a natural laboratory for the study of the integration of hydrological, ecological and geomorphological processes. Moving from morphological and functional analyses of dendritic geometries observed in Nature over a wide range of scales, this Lecture addresses essential ecological processes that take place along dendritic structures, hydrology-driven and controlled, like e.g.: population migrations and human settlements, that historically proceeded along river networks to follow water supply routes; riparian ecosystems composition that owing to their positioning along streams play crucial roles in their watersheds and in the loss of biodiversity proceeding at unprecedented rates; waterborne disease spreading, like epidemic cholera that exhibits epidemic patterns that mirror those of watercourses and of human mobility and resurgences upon heavy rainfall. Moreover, the regional incidence of Schistosomiasis, a parasitic waterborne disease, and water resources developments prove tightly related, and proliferative kidney disease in fish thrives differently in pristine and engineered watercourses: can we establish quantitatively the critical linkages with hydrologic drivers and controls? How does connectivity within a river network affect community composition or the spreading mechanisms? Does the river basin act as a template for biodiversity or for species' persistence? Are there hydrologic controls on epidemics of water-borne disease?

Here, I shall focus on the noteworthy scientific perspectives provided by spatially explicit eco-hydrological studies centered on river networks viewed as ecological corridors for species, populations and pathogens of waterborne disease. A notable methodological coherence is granted by the mathematical description of river networks as the support for reactive transport. The Lecture overviews a number of topics idiosyncratically related to my own research work but ideally aimed at a coherent body of materials and methods. A theory is thus argued to emerge on the role of dendritic geometries as environmental support for ecological dynamics and processes – a fun and possibly even instructive novel research field, possibly a hotspot of eco-hydrologic research in the years to come.