Optimizing CyberShake Seismic Hazard Workflows for Large HPC Resources

Tuesday, 16 December 2014
Scott Callaghan1, Philip J Maechling1, Gideon Juve2, Karan Vahi2, Ewa Deelman2 and Thomas H Jordan1, (1)Southern California Earthquake Center, Los Angeles, CA, United States, (2)USC Information Sciences Inst., Marina Del Rey, CA, United States
The CyberShake computational platform is a well-integrated collection of scientific software and middleware that calculates 3D simulation-based probabilistic seismic hazard curves and hazard maps for the Los Angeles region. Currently each CyberShake model comprises about 235 million synthetic seismograms from about 415,000 rupture variations computed at 286 sites. CyberShake integrates large-scale parallel and high-throughput serial seismological research codes into a processing framework in which early stages produce files used as inputs by later stages. Scientific workflow tools are used to manage the jobs, data, and metadata. The Southern California Earthquake Center (SCEC) developed the CyberShake platform using USC High Performance Computing and Communications systems and open-science NSF resources.
CyberShake calculations were migrated to the NSF Track 1 system NCSA Blue Waters when it became operational in 2013, via an interdisciplinary team approach including domain scientists, computer scientists, and middleware developers. Due to the excellent performance of Blue Waters and CyberShake software optimizations, we reduced the makespan (a measure of wallclock time-to-solution) of a CyberShake study from 1467 to 342 hours. We will describe the technical enhancements behind this improvement, including judicious introduction of new GPU software, improved scientific software components, increased workflow-based automation, and Blue Waters-specific workflow optimizations.
Our CyberShake performance improvements highlight the benefits of scientific workflow tools. The CyberShake workflow software stack includes the Pegasus Workflow Management System (Pegasus-WMS, which includes Condor DAGMan), HTCondor, and Globus GRAM, with Pegasus-mpi-cluster managing the high-throughput tasks on the HPC resources. The workflow tools handle data management, automatically transferring about 13 TB back to SCEC storage.
We will present performance metrics from the most recent CyberShake study, executed on Blue Waters. We will compare the performance of CPU and GPU versions of our large-scale parallel wave propagation code, AWP-ODC-SGT. Finally, we will discuss how these enhancements have enabled SCEC to move forward with plans to increase the CyberShake simulation frequency to 1.0 Hz.