IN21C-3721:
Metadata for numerical models of deep Earth and Earth surface processes

Tuesday, 16 December 2014
Anna Kelbert, Oregon State University, Corvallis, OR, United States and Scott Dale Peckham, University of Colorado, Boulder, CO, United States
Abstract:
Model metadata aims to provide an unambiguous and complete description of a numerical model that would allow an end user scientist an immediate snapshot of the pertinent physical laws, assumptions, and numerical approximations. A rigorous metadata format that allows machine parsing of this information also makes it possible for model coupling frameworks to provide automatic and reliable semantic matching of input and output variables when models are coupled.
Model metadata hinges in part on a controlled vocabulary that consists of human- and machine-readable terms that are unambiguously defined across modeling domains. The Community Surface Dynamics Modeling System (CSDMS) Standard Names are a set of generic naming conventions that have been used to generate a self-consistent controlled vocabulary for surface dynamics processes. As part of the NSF’s EarthCube “Earth System Bridge” project, we extend the rich controlled vocabulary of CSDMS standard names to solid Earth modeling domains, including geodynamics, seismology, magnetotellurics, and petrology. We proceed to create a standard for Model Coupling Metadata (MCM) that is flexible enough to serve both the surface dynamics modeling community, and the deep Earth process modelers, thus bridging CSDMS and the Computational Infrastructure for Geodynamics (CIG) communities with a common semantic network.
Here, we focus on our progress towards establishing an MCM standard for numerical models of solid Earth and Earth surface processes, and on the tools that facilitate creation and maintenance of such metadata. In development of the MCM standard, we leverage the Common Information Model (CIM) of the climate modeling community, as well as the NSF-funded EarthCube GeoSoft project.