Preliminary Results of a Magnetotelluric Survey in the Center of Hawaii Island

Wednesday, 17 December 2014
Barry R Lienert, HIGP/SOEST/Univ Hawaii, Honolulu, HI, United States, Donald Mattson Thomas, CSAV, Hilo, HI, United States and Erin Wallin, HIGP, Hilo, HI, United States
From 2013 up to the present we have been recording magnetotelluric (MT) data at 25 sites in a 35x25 km region (elev. 1943 m) on the saddle between the active volcano of Mauna Loa (4169 m) and the dormant volcano of Mauna Kea (4205 m) on Hawai’i Island. The MT data, particularly the electric fields, are frequently contaminated by spurious components that are not due to the plane-wave magnetic signals required for derivation of the MT impedance tensor. We therefore developed interactive graphical software (MTPlot) to plot and analyze the MT signals in the field. MTPlot allows us to quickly examine records in both the time and frequency domain to in order to judge their quality. It also transforms the data into estimates of apparent resistivity and their error in the frequency range 0.001-500 Hz. This has proved very useful for selecting suitable records for subsequent analysis. We then use multi-taper remote reference processing to obtain our final apparent resistivity estimates and their errors. We present preliminary results of one and two dimensional modeling of these estimates to obtain the three-dimensional distribution of subsurface resistivities down to depths of 5 km. The results are compared to temperatures and properties of cores obtained when we drilled a research hole to a depth of 1760 m in this same region. We shall discuss how our results relate to the extent of the fresh-water and geothermal energy reservoirs that we discovered during drilling.