Hydrocarbon emissions and characterization of methane sources in the Barnett Shale

Monday, 15 December 2014
Josette Elizabeth Marrero1, Amy Townsend-Small2, Simone Meinardi1 and Donald Ray Blake1, (1)University of California Irvine, Irvine, CA, United States, (2)University of Cincinnati, Cincinnati, OH, United States
As energy demand and costs continue to rise worldwide, so does the development of energy from natural gas. The United States in particular has expanded its natural gas industry, becoming one of the world's top gas producing countries. The Barnett Shale of northern Texas is one of the most developed and productive natural gas shale plays in the United States. However, emissions from the many oil and gas system components in the region have not been fully characterized. An extensive list of volatile organic compounds (VOCs) was measured from 120 whole air canisters collected throughout the Barnett shale in October 2013. Known methane sources were targeted and included oil and natural gas well pads, compressor stations, distribution pipelines and city gates, cattle feedlots and landfills. C1-C5 alkanes were elevated throughout the region and were similar to or greater than concentrations in major U.S. cities. The VOC source signature for oil and gas operations was distinguished from biogenic sources. Average ethane content relative to methane was calculated for each of the source types, and ranged from 0.7 to 12.8%. For the whole region, the ethane content was 7.2±6.1%, illustrating the high variability and effect of the various hydrocarbon sources on the local air.