OS21A-1093:
Gasometric anomalies in bottom sediments of the Barents Sea as instrument of Modern Petroleum System study

Tuesday, 16 December 2014
Anastasia Fokina1, Grigorii Akhmanov1, Karin Andreassen2 and Anna Yurchenko1, (1)Lomonosov Moscow State University, Moscow, Russia, (2)UiT The Arctic University of Norway, CAGE-Centre for Arctic Gas Hydrate, Environment, and Climate, Dept. of Geology, Tromso, Norway
Abstract:
In 2011-2013 four research cruises in the Barents Sea were organized by UNESCO‐MSU Centre for Marine Geology and Geophysics (Russia) and University of Tromso (Norway) and were carried out onboard the RV “Akademik N. Strakhov” and RV “Helmer Hanssen”. The cruises were devoted to finding and studying hydrocarbon seeps (e.g. pockmarks, crater-like structures), evaluating neo‐tectonic activity and focusing on some problems in the field of modern geological and geochemical processes in the Arctic region. This topic is focused on identification of the gas anomalies related to the possible cold seep structures, study of the molecular and isotopic composition and origin of the hydrocarbon gases from the bottom sediments.

During this research the interpretation of geochemical survey data was carried out within the different structures of the Barents region: 1) The area of distribution of craters, 2) Storfjordrenna and Storfiordbanken, 3) Nordkap and Tiddly basins, Fedynskii high, North-Kildinsk field.

1) In the Central Barents Sea in the area of distribution of craters residual discharge of gas from the Triassic sandstones has occurred and manifested through the activity of gas flares and elevated concentrations of methane. Values of gas coefficients indicate the possible existence of thermogenic gas in the sample. The active unloading of gas and formation of craters associated with the disintegration of gas hydrates.

2) Discovered gas flares, pockmarks and abnormal high concentrations of methane are the first statement about the presence of active gas discharge in the NW Barents Sea. HC gases are formed as a result of microbial processing of thermogenic gas. In the area there is an increased microbial activity resulting in authigenic carbonate formation. Unloading of gas is observed in the edges parts of the large glacial moraine along the base of which the lateral migration of gas occurs. Reservoirs can be Lower-Middle and Lower-Middle Triassic sandstones.

3) In the Southern Barents Sea no gas anomalies were detected: low gas concentrations, the gas is of biogenic origin. Geochemical survey within North- Kildinsk field and Fedynskii high were unsuccessful. Petroleum system in the surface geochemical field practically do not manifest due to the low permeability of dense clay silts.