Seep Mapping: Using NOAA Ship Okeanos Explorer Data to Visualize the Physical Environments of Seeps in the Gulf of Mexico

Tuesday, 16 December 2014
Lydia Auner1, Lindsay McKenna2, Elizabeth Lobecker2 and Derek Sowers2, (1)Carleton College, Geology, Northfield, MN, United States, (2)NOAA Office of Exploration and Research (ERT, Inc.), Durham, NH, United States
More than 550 possible gaseous seeps were previously identified along the continental margin in the northwestern Gulf of Mexico using water-column acoustic backscatter data collected on the NOAA Ship Okeanos Explorer in the spring of 2014. Although the presence of macro-seeps can only be verified through visual confirmation, several studies suggest that gaseous bubbles emitted by seeps are uniquely detected in sonar water-column backscatter returns (Judd and Hovland, 1992; Nikolovska et al., 2008; Weber et al., 2012). In this study, more than 200 seeps were independently identified from a subset of water-column backscatter data collected in March and April, 2014. Additional data collected aboard the Okeanos Explorer includes bathymetry, seafloor backscatter, sub-bottom seismic reflection profiles, and ROV video footage. These datasets, along with calculated geomorphic parameters such as slope, were used to develop specialized mapping products to display physical characteristics of the seafloor and subsurface surrounding a number of gaseous seeps. Preliminary results indicate that seeps occur in a wide variety of geomorphic settings, including the edges of salt domes, and at depths ranging from approximately 300 meters to 1,100 meters. Study results could be used to make predictions about where seeps are most likely to be detected along the continental margin of the northwestern Gulf of Mexico. These predictions could inform future efforts to study seeps and their associated biological communities within the study area or aid in the development of larger scale seep characterization and predictive modeling.