Propagation and Evolution of Interplanetary Magnetic Clouds: Global Simulations and Comparisons with Observations

Thursday, 18 December 2014: 11:20 AM
Pete Riley, Michal Ben-Nun, Jon Linker, Tibor Torok, Roberto Lionello and Cooper Downs, Predictive Science Inc., San Diego, CA, United States
In this talk, we explore the evolution of interplanetary coronal mass ejections (ICMEs), and fast magnetic clouds (MCs) in particular. We address three specific issues. First, What are the large-scale forces acting on ejecta as they travel from the Sun to 1 AU through a realistic ambient solar wind, and how does they affect the large-scale structure of the event? Second, what are the dominant waves/shocks associated with fast ICMEs? And third, how are the properties of ICMEs different during cycle 24 than during the previous cycle? To accomplish these objectives, we employ a variety of numerical approaches, including global resistive MHD models that incorporate realistic energy transport processes. We also compare and contrast model results with both remote solar and in-situ measurements of ICMEs at 1 AU and elsewhere, including the so-called ``Bastille Day’’ event of July 14, 2000, and the more recent ``extreme ICME’’ observed by STEREO-A on July 23, 2012.