Integrating the science and socio-economics of resilience along the Northeastern coast

Wednesday, 17 December 2014
Peter Stewart Murdoch1, Sonya Jones2, Matthew E Andersen1, Michael Joseph Focazio1, John W Fulton3 and Rachel Muir1, (1)USGS Headquarters, Reston, VA, United States, (2)USGS Georgia Water Science Center Norcross, Norcross, GA, United States, (3)USGS Colorado Water Science Center Denver, Denver, CO, United States
New systems for early warning of coastal hazards, and a more accurate assessment of vulnerability of coastal regions and resources are needed to safely occupy, use, and protect the ecosystem services of our coastal landscapes and waters. The US Geological Survey and their Federal, State, Local, Non-government, and Academic partners have initiated a suite of projects to improve coastal resilience in the Northeast through better scientific understanding, modeling, and decision support. Improving coastal resilience requires understanding the complex interactions of several components of the coastal environment and their combined response to disturbances such as sea level rise, more powerful storms, development pressure, pollution, and resource extraction. New USGS research is focused on improving our capacity to predict coastal hazards and define the thresholds of resilience required for a range of sea-level rise and storm-surge scenarios. Predictive models of earth processes and ecological responses are being refined, thus improving early warning of disturbance in specific coastal sub-regions, and refining maps of the relative vulnerabilities of coastal features and communities from Virginia to Maine. Better understanding of sand sources and transport for beach replenishment and protective berms, mapping contaminant sources and release pathways, defining the factors controlling marsh accretion or migration, linking coastal and watershed hydrology, and networking new and existing tide, surge, and wave monitoring for real-time tracking of water hazards represent the multiple science products being combined to understand and protect coastal ecosystems, communities, and commerce. The integrated science underway is clarifying the thresholds of tolerance for multiple disturbance vectors in the coastal environment, and informing long-term, science-based strategies that will support “whole system” resilience into the future. A new multi-agency effort to establish metrics for measuring change in coastal resilience will build off this integrated science to help guide future coastal science in the most productive directions.