PP21C-1347:
Mid- to Late Holocene Climate Shift in the Southern Gulf of California and Tropical Pacific Ocean

Tuesday, 16 December 2014
Ligia L Perez-Cruz1, Jaime Urrutia Fucugauchi1, Victor Velasco1, Alejandro Rodriguez1 and Konstantin Choumiline2, (1)UNAM National Autonomous University of Mexico, Mexico City, Mexico, (2)University of California Riverside, Riverside, CA, United States
Abstract:
A multiproxy record has been acquired from a gravity core (DIPAL-I K47) taken in La Paz Basin, an area which is situated in the southwestern sector of the Gulf of California at the junction to the Tropical Pacific Ocean. The high-resolution data sets, from XRF, TOC, magnetic susceptibility and hysteresis measurements, were used to track climatic changes in the tropical climate system at sub-centennial time scales over the past 7.3 cal kyr BP. The paleoprecipitation record shows variation trends, with a shift during the mid- to late Holocene, characterized by changes from high to low humidity. Pluvial, biogenic and eolian input, marked by variations in Ti, Si, Fe, K, Ca, Zr/Ti, Ca/Ti and magnetic susceptibility, shows trend changes between 7-5 cal kyr, 5-4.5 cal kyr, 4.5-3.5 cal kyr and 2.15-1.4 kyr. Drought events are recognized from 3.7 to 3.4, 2.8 to 1.8 cal kyr BP, and between 1.4 and 1.2 cal kyr BP.

The southern Gulf is well suited for documenting the climatic and precipitation changes in the tropical Pacific Ocean associated with ITCZ latitudinal migration, PDO, ENSO events and the North American monsoon. Analysis of sourcing, transport and deposition of sediments is used for reconstructing the changing ocean-atmosphere circulation patterns, particularly sensitive to paleoprecipitation. The Bay receives sediments mainly from the surrounding volcanic ranges of the peninsular Baja California. There are no rivers in the peninsula and sediments are related to pluvial input trough ephemeral creeks along the steep cliff ranges and narrow shelf. Biogenic sediments are associated with productivity and oceanographic conditions through upwellings and mesoscale gyres. Eolian sediments are transported into the basin from the peninsula and continent, including transport of fine dust from the northern desert of Sonora-Mojave and arid terrains in the peninsula. It is important to highlight that a common 1800 yr solar variation spectral periodicity has been captured. Correlation of the Bay of La Paz paleoprecipitation with records from Cariaco Basin, Gulf of Mexico and Santa Barbara documents regional variability, with spatial-temporal variation for the transitional interval from high to low humidity.