H23N-1090:
Application of Multi-Model CMIP5 Analysis in Future Drought Adaptation Strategies
Tuesday, 16 December 2014
Maura Casey1, Lifeng Luo1 and Yang Lang2, (1)Michigan State University, East Lansing, MI, United States, (2)Beijing Normal University, Beijing, China
Abstract:
Drought influences the efficacy of numerous natural and artificial systems including species diversity, agriculture, and infrastructure. Global climate change raises concerns that extend well beyond atmospheric and hydrological disciplines – as climate changes with time, the need for system adaptation becomes apparent. Drought, as a natural phenomenon, is typically defined relative to the climate in which it occurs. Typically a 30-year reference time frame (RTF) is used to determine the severity of a drought event. This study investigates the projected future droughts over North America with different RTFs. Confidence in future hydroclimate projection is characterized by the agreement of long term (2005-2100) multi-model precipitation (P) and temperature (T) projections within the Coupled model Intercomparison Project Phase 5 (CMIP5). Drought severity and the propensity of extreme conditions are measured by the multi-scalar, probabilistic, RTF-based Standard Precipitation Index (SPI) and Standard Precipitation Evapotranspiration Index (SPEI). SPI considers only P while SPEI incorporates Evapotranspiration (E) via T; comparing the two reveals the role of temperature change in future hydroclimate change. Future hydroclimate conditions, hydroclimate extremity, and CMIP5 model agreement are assessed for each Representative Concentration Pathway (RCP 2.6, 4.5, 6.0, 8.5) in regions throughout North America for the entire year and for the boreal seasons. In addition, multiple time scales of SPI and SPEI are calculated to characterize drought at time scales ranging from short to long term. The study explores a simple, standardized method for considering adaptation in future drought assessment, which provides a novel perspective to incorporate adaptation with climate change. The result of the analysis is a multi-dimension, probabilistic summary of the hydrological (P, E) environment a natural or artificial system must adapt to over time. Studies similar to this with specified criteria (SPI/SPEI value, time scale, RCP, etc.) can provide professionals in a variety of disciplines with necessary climatic insight to develop adaptation strategies.