P33A-4031:
Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

Wednesday, 17 December 2014
Brandi L Carrier and Samuel P Kounaves, Tufts University, Medford, MA, United States
Abstract:
Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules.

Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination.

References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol. 118, p. 1955, 2013 [3] Carrier & Kounaves (2014), Abstract #2570, 45th Lunar and Planetary Science Conference, [4] Kerr, Science, Vol. 340, p. 138, 2013 [5] Catling et al., J. Geophys. Res., Vol. 115, p. E00E11, 2010 [6] Martucci (2012), National Conference of Undergraduate Research [7] Quinn et al, Astrobiology, Vol. 13(6) p. 515-20, 2013