A51O-03:
One Year of Doppler Lidar Observations Characterizing Boundary Layer Wind, Turbulence, and Aerosol Structure During the Indianapolis Flux Experiment
Abstract:
The Indianapolis Flux Experiment (INFLUX) is aimed at improving methods for estimation of greenhouse gas emissions at urban scales. INFLUX observational components include several-times-per-month aircraft measurements of gas concentrations and meteorological parameters, as well as a number of towers observing CO2, CH4, and CO and a single continuously operating Doppler lidar to estimate wind, turbulence and aerosol structure in the boundary layer. The observations are used to develop top-down emissions estimates from the aircraft measurements and as input to inversion models. The Doppler lidar provides information on boundary layer structure for both the aircraft and inversion studies.A commercial Doppler lidar characterized by low pulse energy and high pulse repetition rate has operated for well over a year at a site NE of downtown Indianapolis. The lidar produces profiles of horizontal wind speed, vertical velocity variance, and aerosol structure two to three times per hour. These data are then used to investigate boundary layer mixing and thickness and horizontal transport as inputs for the flux calculations. During its one year deployment the lidar generally operated reliably with few outages. Comparisons with aircraft spirals over the site and with the NOAA High Resolution research Doppler lidar deployed to Indianapolis for one month during May, 2014, were used to assess the performance of the INFLUX lidar. Measurements agreed quite well when aerosol loading was sufficient for lidar observations throughout the boundary layer. However, low aerosol loading during some periods limited the range of the lidar and precluded characterization of the full boundary layer.
We present an overall assessment of the commercial Doppler lidar for providing the needed information on boundary layer structure for emission estimations, and show variability of the boundary layer observations over diurnal, seasonal, and annual cycles. Recommendations on system design changes to obtain data under a more complete range of atmosphere conditions are suggested.