A51O-02:
How can bottom-up greenhouse gas flux quantification in urban systems be relevant to both carbon science and policy?

Friday, 19 December 2014: 8:15 AM
Kevin R Gurney, Arizona State University, Tempe, AZ, United States
Abstract:
Scientific research on spatially-resolved, bottom-up quantification of urban greenhouse gas (GHG) emissions at urban scales has advanced considerably in the last decade. It has been primarily focused on contributing prior information to top-down approaches aimed at GHG emissions validation via atmospheric monitoring of GHG mixing ratios. However, bottom-up quantification has a number of other contributions to both scientific and policy topics. In order to do so, however, it must expand beyond current capabilities. Among these are the need to quantify both consumption- and production-based data products, utilization of remote-sensing, prognostic capabilities, expansion outside of the US, and uncertainty quantification. Such advances will allow it to make significant contributions to scientific research on urban science and energy analysis. In the arena of climate change policy, spatially-resolved, bottom-up quantification efforts can baseline and guide urban emissions mitigation, educate and engage the public, and offer a much more consistent and comprehensive means to compare cities across national and international domains. It can also find inconsistencies in existing reported regulatory data such as recent bottom-up research on examining US power plant CO2 emissions. I will review the current bottom-up GHG emissions quantification and review the opportunities and challenges associated with satisfying both climate change science and policy needs.