A24B-06:
High Spectral Resolution Lidar (HSRL)-2 Observations of Aerosol Variability and Mixing during Boundary Layer Evolution in Houston
Tuesday, 16 December 2014: 5:15 PM
Sharon P Burton1, Amy Jo Scarino1, Raymond R Rogers1, Chris A Hostetler1, Richard Anthony Ferrare1, Patricia Sawamura1,2, Timothy Berkoff1, David B Harper1, Anthony L Cook1 and Pablo E Saide3, (1)NASA Langley Research Center, Hampton, VA, United States, (2)University of Maryland, Baltimore County, Hampton, VA, United States, (3)The University of Iowa, Iowa City, IA, United States
Abstract:
The NASA Langley airborne multi-wavelength High Spectral Resolution Lidar (HSRL-2) provides the vertical distribution of aerosol optical properties as “curtains” of aerosol extinction, backscatter and depolarization along the flight track, plus intensive properties that are used to infer aerosol type and external mixing of types. Deployed aboard the NASA Langley King Air on the DISCOVER-AQ field mission in Houston in September 2013, HSRL-2 flew a pattern that included 18 ground sites, repeated four times a day, coordinated with a suite of airborne in situ measurements. The horizontally and vertically resolved curtains of HSRL-2 measurements give an unparalleled view of the spatial and temporal variability of aerosol, which provide broad context for interpreting other measurements and models. In Houston, HSRL-2 generally observed significant variability with distinct layering: boundary layer, residual layer, and frequent upper layers of smoke transported from the Mississippi Valley. The period from Sep. 11-14 is notable for a large aerosol build-up and persistent layers in the free troposphere. We investigate the aerosol properties and evolution using the vertically resolved HSRL-2 measurements, typing and mixture analysis techniques, and boundary layer detection. Between morning and afternoon overpasses, as the boundary layer grows, many distinctions between the layers are lost as the aerosols become mixed. As the boundary layer collapses overnight, the aerosols are cut off and are observed in a distinct residual layer the following morning. HSRL-2 measurements of the upper smoke layers suggest slightly different properties each day as new smoke enters the region, while the morning boundary layer indicates more similarity in local emissions day-to-day. HSRL-2 intensive variables (indicators of aerosol type) reflect complex yet predictable mixing. We will present the analysis of aerosol mixtures, and explore the WRF-Chem chemical transport model along the HSRL-2 flight path.