Geodetic Glacier Mass Balance of Norway

Thursday, 18 December 2014: 2:00 PM
Liss Marie Andreassen, Hallgeir Elvehøy and Bjarne Kjøllmoen, Norwegian Water Resources and Energy Directorate, Oslo, Norway
Glaciers in mainland Norway cover 2692 km2and span a large range from south to north. Glacier surface mass balance is monitored by the direct (also called glaciological, traditional or conventional) method and indirectly assessed by the geodetic (or cartographic) method. The current glacier monitoring programme includes direct surface mass-balance investigations on 14 glaciers. Since measurements started at Storbreen in 1949, mass balance has been measured on a total of 43 glaciers. The accuracy of the direct measurements depends on both the accuracy of the point observations and inter- and extrapolation of point values to spatially distributed values. Long series of measurements can be inhomogeneous because of changes in personnel, methods, and glacier topography. Reanalysing glacier mass balance series is recommended as standard procedure for every mass balance monitoring programme with increasing importance for long time series. Repeated, detailed glacier mapping by aerial photography and photogrammetric methods, and recently by laser scanning (LIDAR), have been performed to calculate geodetic mass balance. The geodetic results are used as an independent check of the direct method as well as to monitor volume, area and mass changes of glaciers that lack direct measurements. Since 2007, LIDAR campaigns have been conducted on a 1/3 of the glacier area in Norway including all current mass balance glaciers. The objectives of the surveys are to produce high quality digital elevation models (DEMs) and orthophotos to document the present state of the glaciers and assess glacier changes since previous surveys. Furthermore, the DEMs and orthophotos provide an accurate baseline for future repeated mapping and glacier change detection. Here we present geodetic mass balance results for Norway over the last 50 years and compare the results with the direct in-situ measurements where available. We also show examples of how glacier mass balance data are being reanalyzed including homogenization and uncertainty assessments, and, in cases of unexplained discrepancies, adjusting the (annual) glaciological to the (multi-annual) geodetic balances.