A53P-02:
The Walker circulation, diabatic heating, and outgoing longwave radiation

Friday, 19 December 2014: 1:55 PM
Samuel N Stechmann and H. Reed Ogrosky, University of Wisconsin Madison, Madison, WI, United States
Abstract:
For the tropical atmosphere on planetary scales, it is common to model the circulation using strong damping. Here, with new data analysis techniques, evidence suggests that damping can actually be neglected. Specifically, near the equator, the east--west overturning circulation is in agreement with the undamped wave response to atmospheric heating. To estimate the heating, satellite observations of outgoing longwave radiation (OLR) are used. Frequently OLR is used as a heuristic indicator of cloudiness. Here, the results further suggest that OLR variations are actually proportional to total diabatic heating variations, with a proportionality constant of 18 W m-2 (K/day)-1. While the agreement holds best over long time averages of years or decades, it also holds over shorter periods of one season or one month. Consequently, it is suggested that the strength of the Walker circulation -- and its evolution in time -- could be estimated using satellite data.