NH52A-07:
Surge Driven Return Flow Results in Deposition of Coarse Grain Horizons Archiving a 4000 Year Record of Extreme Storm Events, Cape Cod, Massachusetts

Friday, 19 December 2014: 11:49 AM
Chris Vincent Maio1, Jeffrey P Donnelly2, Richard Sullivan2, Christopher R Weidman3 and Vitalii Sheremet2, (1)University of Alaska Fairbanks, Department of Geosciences, Fairbanks, AK, United States, (2)WHOI, Woods Hole, MA, United States, (3)Waquoit Bay National Estuarine Research Reserve, Waquoit, United States
Abstract:
The brevity of the instrumental record and lack of detailed historical accounts is a limiting factor in our understanding of the relationship between climate change and the frequency and intensity of extreme storm events. This study applied paleotempestologic and hydrographic methods to identify the mechanisms of storm-induced coarse grain deposition and reconstruct a late Holocene storm record within Waquoit Bay, Massachusetts. Three sediment cores (6.0 m, 8.4 m, and 8.2 m) were collected in 3 m of water using a vibracore system. Grain sizes were measured along core to identify coarse grain anomalies that serve as a proxy for past storm events. An historical age model (1620-2011 AD) was developed based on Pb pollution chronomarkers derived from X-Ray Florescence bulk Pb data, equating to a sedimentation rate of 8-8.3 mm/yr (R2 = 0.99). A long-term (4000 to 275 years before present) sedimentation rate of 1.1-1.4 mm/yr (R2 = 0.89) was calculated based on twenty-four continuous flow atomic mass spectrometry 14C ages of marine bivalves. To determine hydrographic conditions within the embayment during storm events current meters and tide gauges were deployed during Hurricane Irene (2011) which measured a storm surge of 88 cm above mean sea level. The buildup of storm water against the landward shoreline resulted in a measured 10 cm/s seaward moving bottom current capable of transporting coarse sand eroded from the adjacent shoreface into the coring site. Modeled surges for eleven modern and historic storm events ranged in height from 0.37 m (2011) to 3.72 m (1635) above mean high water. The WAQ1, WAQ2, and WAQ3 cores recorded a total of 89, 139, and 137 positive anomalies that exceeded the lower threshold and 15, 34, and 12 that exceeded the upper threshold respectively. Events recorded during the historic period coincide with documented storm events. The mean frequency within the three cores applying the lower threshold was 2.6 events per century, while applying the upper threshold was 0.44 events per century. The study has identified a previously understudied transport mechanism for the formation of storm-induced coarse grain horizons and highlighted some of the challenges to utilizing shallow water embayments as sites for storm reconstructions.