GP51B-3741:
Delayed Geodynamo in Hadean
Friday, 19 December 2014
Jafar Arkani-Hamed, University of Toronto, Physics, Toronto, ON, Canada
Abstract:
Paleointensity measurements of Archean rocks reveal a strong geodynamo at ~3.45 Ga, while excess nitrogen content of lunar soil samples implies no geodynamo at ~3.9 Ga. Here I propose that initiation of a strong geodynamo is delayed due to accretion style of Earth, involving collision and merging of a few dozen Moon to Mars size planetary embryos. Two accretion scenarios consisting of 25 and 50 embryos are investigated. The collision of an embryo heats the proto-Earth’s core differentially and the rotating low-viscosity core stably stratifies, creating a spherically symmetric and radially increasing temperature distribution. Convection starts in the outer core after each impact but is destroyed by the next impact. The iron core of an impacting embryo descends in the mantle and merges to the proto-Earth’s core. Both adiabatic and non-adiabatic merging cases are studied. A major part of the gravitational energy released due to core merging is used to lift up the upper portion of the core to emplace the impactor core material at the neutrally buoyant level in the proto-Earth’s core. The remaining energy is converted to heat. In the adiabatic case the merging embryo’s core retains all of the remaining energy, while in the non-adiabatic merging 50% of the remaining energy is shared with the outer part of the proto-Earth’s core where the embryo’s core descends. The two merging models result in significantly different temperature distributions in the core at the end of accretion. After the accretion, the convecting shell in the outer core grows monotonically and generates geodynamo gradually. It takes about 50-100 Myr for the convecting shell to generate a strong dipole field at the surface, 50,000 to 100,000 nT, in the presence of a large stably stratified liquid inner core when the convecting outer core thickness exceeds about one half the radius of the Earth’s core.