IN53D-3823:
Web Based Interactive Anaglyph Stereo Visualization of 3D Model of Geoscience Data
Friday, 19 December 2014
JongGyu Han, KIGAM Korea Institute of Geoscience and Mineral Resources, Geological Mapping Department, Daejeon, South Korea
Abstract:
The objectives of this study were to create interactive online tool for generating and viewing the anaglyph 3D stereo image on a Web browser via Internet. To achieve this, we designed and developed the prototype system. Three-dimensional visualization is well known and becoming popular in recent years to understand the target object and the related physical phenomena. Geoscience data have the complex data model, which combines large extents with rich small scale visual details. So, the real-time visualization of 3D geoscience data model on the Internet is a challenging work. In this paper, we show the result of creating which can be viewed in 3D anaglyph of geoscience data in any web browser which supports WebGL. We developed an anaglyph image viewing prototype system, and some representative results are displayed by anaglyph 3D stereo image generated in red-cyan colour from pairs of air-photo/digital elevation model and geological map/digital elevation model respectively. The best viewing is achieved by using suitable 3D red-cyan glasses, although alternatively red-blue or red-green spectacles can be also used. The middle mouse wheel can be used to zoom in/out the anaglyph image on a Web browser. Application of anaglyph 3D stereo image is a very important and easy way to understand the underground geologic system and active tectonic geomorphology. The integrated strata with fine three-dimensional topography and geologic map data can help to characterise the mineral potential area and the active tectonic abnormal characteristics. To conclude, it can be stated that anaglyph 3D stereo image provides a simple and feasible method to improve the relief effect of geoscience data such as geomorphology and geology. We believe that with further development, the anaglyph 3D stereo imaging system could as a complement to 3D geologic modeling, constitute a useful tool for better understanding of the underground geology and the active tectonic