The Continental Drift Convection Cell

Friday, 19 December 2014
John A Whitehead and Mark D Behn, WHOI, Woods Hole, MA, United States
Continents on Earth periodically assemble to form supercontinents, and then break up again into smaller continental blocks (the Wilson Cycle). Highly developed but realistic numerical models cannot resolve if continents respond passively to mantle convection or whether they modulate flow. Our simplified numerical model addresses this problem: A thermally insulating continent floats on a stress-free surface for infinite Prandtl number cellular convection with constant material properties in a chamber 8 times longer than its depth. The continent moves back and forth across the chamber driven by a “continental drift convection cell” of a form not previously described. Subduction exists at the upstream end with cold slabs dipping at an angle beneath the moving continent. Fluid moves with the continent in the upper region of this cell with return flow near the bottom. Many continent/subduction regions on Earth have these features. The drifting cell enhances vertical heat transport by approximately 30% compared to a fixed continent, especially at the core-mantle boundary, and significantly decreases lateral mantle temperature differences. However, continent drift or fixity has smaller effects on profiles of horizontally averaged temperature. Although calculations are done at Rayleigh numbers lower than expected for Earth’s mantle (2x105 and 106), the drift speed extrapolates to reasonable Wilson Cycle speeds for larger Ra.