NH41A-3776:
The Sentinel Rock Avalanche of Zion National Park, Utah

Thursday, 18 December 2014
Jessica Castleton1, Jeffrey R Moore1 and Susan Ivy-Ochs2, (1)University of Utah, Department of Geology and Geophysics, Salt Lake City, UT, United States, (2)ETH Zurich, Laboratory of Ion Beam Physics, Zurich, Switzerland
Abstract:
Blocking the mouth of Zion Canyon over a distance of 2.3 km, the prehistoric Sentinel rock avalanche has had long-lasting impact on the spectacular scenery of Zion National Park, once damming a large lake that filled the rocky canyon with sediment. Today few of Zion’s nearly 3 million annual visitors appreciate that the gentle and inviting, flat valley floor amidst great sandstone cliffs owes its origin to a massive landslide. In addition to representing an extreme-magnitude natural hazard with potentially devastating consequences, we also point out the constructive geomorphic and anthropogenic significance of large rock avalanches in this steep desert landscape. We combine new mapping of rock avalanche and related lacustrine deposits to reconstruct topography before and after the landslide, comment on failure kinematics, and determine new, refined volume estimates for the event. Cosmogenic nuclide surface exposure dating of deposited rock avalanche boulders allows us to date the landslide, determine subsequent rates of deposit erosion, and propose potential triggering mechanisms. Evidence suggests that boulders from across the slide surface were deposited simultaneously, yielding similar exposure ages and indicating a single massive and catastrophic rock slope failure. Rich anthropogenic use of the slide-dammed canyon attests to the long-lasting and diverse impacts of large rock avalanches.