Resonant Ultrasound Spectroscopy of Anisotropic Shale Samples

Monday, 15 December 2014
Leighton Myles Watson1,2 and Kasper van Wijk2, (1)Stanford University, Los Altos Hills, CA, United States, (2)University of Auckland, Auckland, New Zealand
Resonant Ultrasound Spectroscopy (RUS) is a technique that can be used to determine the elastic properties of geological core samples. The resonant frequencies of the sample are measured and the elastic tensor inverted for by the non-linear Levenberg-Marquardt algorithm. It is a non-destructive method that allows the complete elastic tensor to be calculated from a single measurement and can provide important attenuation information. Many crustal rocks are anisotropic and can often be described by a hexagonal model of symmetry, where the sample has a single axis of rotational symmetry with perpendicular isotropic planes. Geological samples are often cylindrical and cut parallel or perpendicular to the layering (termed horizontal or vertical transverse isotropy respectively). The two situations cannot be treated by a single model and have substantially different resonant spectra. We have added functionality to existing forward and inverse codes to account for both situations. It is important to be able to deal with the two subsets of hexagonal symmetry because by using mutually perpendicular samples from the same rock complementary information can be obtained and more accurate results achieved than is possible with a single core. Shale formations consist of thin layered sequences of aligned microscopic clay platelets, which are responsible for the inherent anisotropy of shales, and can be described by a hexagonal symmetry model. RUS is used to determine the complete elastic tensor of two shale samples. When measured using RUS at frequencies on the order of 104 Hz and with time-of-flight methods with a dominant frequency an order of magnitude higher the elastic properties display frequency dispersion.