A11M-0230
The impact of residential combustion emissions on atmospheric aerosol, human health and climate

Monday, 14 December 2015
Poster Hall (Moscone South)
Edward William Butt, University of Leeds, Institute for Climate and Atmospheric Science, School of Earth and Environment, Leeds, United Kingdom
Abstract:
Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors that effect air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels which are the primary energy source for nearly half the world’s population. Despite this importance, residential emissions are poorly quantified, as are their impacts on air quality and climate. We used a global aerosol microphysics model to simulate the impact of residential emissions on atmospheric aerosol in the year 2000, and evaluated simulated concentrations against surface observations of aerosol mass and number. Residential emissions make the largest contributions to surface particulate matter (PM2.5) concentrations in East Asia, South Asia and Eastern Europe, matching regions of greatest emissions. We used concentration response functions to estimate a global annual excess adult (> 30 years of age) premature mortality due to residential emissions of between 113, 300 and 827, 000 when uncertainties in both residential emissions and health effects of PM2.5 were accounted for. Premature mortality was greatest in Asia, with China and India accounting for 50% of simulated global excess mortality. Using an offline radiative transfer model, we show that residential emissions exerted a global annual mean direct radiative effect of between -66 mW m-2 and +21 mW m-2, accounting for uncertainties in emissions flux and assumed ratio of carbonaceous and sulphur emissions. Residential emissions exerted a negative global annual mean first aerosol indirect effect of between -52 mW m-2 and -16 mW m-2, which was found to be sensitive to the assumed size distribution of carbonaceous emissions. Our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.