GC33C-1310
Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Shree R.S. Dangal, International Center for Climate and Global Change Research, Auburn, AL, United States
Abstract:
The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world’s population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor – water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.