Hydrocarbon Migration from the Micro to Macro Scale in the Gulf of Mexico

Caroline Johansen1, Eric Marty2, Mauricio Silva1, Michael Natter3, William W Shedd3, Jenna C Hill4, Richard F Viso5, Vladislav Lobodin6, Logan Krajewski6, Michael Abrams7 and Ian R MacDonald1, (1)Florida State University, Tallahassee, FL, United States, (2)University of Georgia, Marine Sciences, Athens, GA, United States, (3)Bureau of Ocean Energy Management, New Orleans, LA, United States, (4)Coastal Carolina University, Conway, SC, United States, (5)Coastal Carolina University, Coastal and Marine Systems Science, Conway, SC, United States, (6)National Magnetic High Field Laboratory, Tallahassee, FL, United States, (7)Hydrocarbon Systems and Evaluation, Managing Director, Houston, TX, United States
Abstract:
In the Northern Gulf of Mexico (GoM) at GC600, ECOGIG has been investigating the processes involved in hydrocarbon migration from deep reservoirs to sea surface. We studied two individual vents, Birthday Candles (BC) and Mega-Plume (MP), which are separated by 1km on a salt supported ridge trending from NW-SE. Seismic data depicts two faults, also separated by 1km, feeding into the surface gas hydrate region. BC and MP comprise the range between oily, mixed, and gaseous-type vents. In both cases bubbles are observed escaping from gas hydrate out crops at the sea floor and supporting chemosynthetic communities. Fluid flow is indicated by features on the sea floor such as hydrate mounds, authigenic carbonates, brine pools, mud volcanoes, and biology. We propose a model to describe the upward flow of hydrocarbons from three vertical scales, each dominated by different factors: 1) macro (capillary failure in overlying cap rocks causing reservoir leakage), 2) meso (buoyancy driven fault migration), and 3) micro (hydrate formation and chemosynthetic activity). At the macro scale we use high reflectivity in seismic data and sediment pore throat radii to determine the formation of fractures in leaky reservoirs. Once oil and gas leave the reservoir through fractures in the cap rock they migrate in separate phases. At the meso scale we use seismic data to locate faults and salt diapirs that form conduits for buoyant hydrocarbons follow. This connects the path to the micro scale where we used video data to observe bubble release from individual vents for extended periods of time (3h-26d), and developed an image processing program to quantify bubble release rates. At mixed vents gaseous bubbles are observed escaping hydrate outcrops with a coating of oil varying in thickness. Bubble oil and gas ratios are estimated using average bubble size and release rates. The relative vent age can be described by carbonate hard ground cover, biological activity, and hydrate mound formation as these features progress with persistent hydrocarbon influx. Bottom features along with seismic data, bubble release rates and bubble composition (oily vs gaseous), are implemented into our model to describe the relative vent age and dynamic mechanisms of hydrocarbon migration at three vertical spatial scales of oily and gaseous natural seeps in the GoM.