Tidal Farm Array Optimization: Dynamics, Engineering, And Environment
Tidal Farm Array Optimization: Dynamics, Engineering, And Environment
Abstract:
Through a novel collaboration, we seek to improve optimization of turbine placement in tidal farms. In this work, a given flow field is modeled using OpenTidalFarm in two dimensions and with turbine representations. The algorithm finds the optimal placement of turbines in terms of maximizing power production in the setup given restrictions such as required depth. Subsequent analysis ties in engineering and economics to adjust that power production according to realistic associated costs. Accounting for costs can greatly impact optimal turbine layout by limiting the number of turbines that it is cost efficient to build. Additionally, considering environmental impacts can further limit turbine placement, and may be in the form of, for example, restricting spatial and time-averaged changes to the speed, vorticity, mixing, or the tidal range.
We model a tidally-driven idealized headland channel that approximates the length scales of Minas Passage in the Bay of Fundy, Canada. With this system, we have simulated the domain with no turbines as a base case, solved for the optimal layout within a given farm lease area to maximize power production, and an additional case which accounts for engineering costs. On-going work focuses on assessing existing environmental impact to be used for implementing turbine placement restrictions.