Determining Marine Renewable Energy Areas in the Bay of Fundy

Richard Karsten, Thomas Roc and Mitchell O'Flaherty-Sproul, Acadia University, Mathematics and Statistics, Wolfville, NS, Canada
Abstract:
The Bay of Fundy has the world's highest tides and several excellent sites for the development of in-stream tidal energy. In particular, Minas Passage in the upper Bay of Fundy has been identified as a site with the theoretical potential to produce over 2000 MW of power. Recently, the Nova Scotia government has enacted legislation to define Marine Renewable Energy Areas where tidal energy will be developed. As part of this process, the practical potential of the regions in the upper Bay of Fundy must be accurately quantified.

To assist in this process, we have conducted a practical resource assement of the region. The resource asssesment includes an analysis of the hydrodynamic characteristics of the region. The assessment uses the simulations data from a high-resolution, multi-layered, unstructured-grid, coastal-ocean model (FVCOM). The numerical model has been validated through comparison to numerous measurements of tdial flow from ADCPs, surface drifters and X-band radar.

The simulations data is used to estimate the power production of different turbine technologies across the study area. The technologies will have varying hub-height and power curves. Other characteristics of the flow (i.e., water depth, variation in flow) will be used to determine if sites are more or less suitable for turbine deployment. As well, the numerical data will be used to design practical layouts for turbine farms, that have suitable spacing of turbines to allow deployment and minimize the interaction of wakes. The final output will be a prediction of the number of turbines and the power production of an array for a given region.

The results of the analysis of the simulation data will be processed into a series of GIS layers. These will be combined with other indications of suitability for deployment of a turbine array: for example, geo-technical, marine conditions, environmental factors, social factors, proximity to on-shore infrastructure etc. The final GIS tool will allow the user to evaluate the suitablility of a region for turbine development, and calculate a practical installed capacity for the region. While this presentation will focus on the development and validation of the numerical model, it will also discuss how the other criteria enter into the process and influence the modelling procedure.