Heat stress dictates microbial lipid composition in hydrothermal marine sediments

Miriam Sollich1, Marcos Y Yoshinaga2, Stefan Häusler3, Kai-Uwe Hinrichs4 and Solveig I. Bühring2, (1)Marum Institute, University of Bremen, Hydrothermal Geomicrobiology, Bremen, Germany, (2)MARUM - University of Bremen, Bremen, Germany, (3)Max-Planck-Institute, Bremen, Germany, (4)MARUM / University of Bremen, Bremen, Germany
Abstract:
Abundant and diverse microbial communities inhabit hydrothermal marine sediments. Since ion permeability of membranes increases with temperature archaea and bacteria that use proton/sodium as coupling ions for bioenergetics must constantly adjust their cytoplasmic membrane permeability, which in turn is mostly controlled by the lipid composition. Here, we investigated a thermal gradient across a marine sediment field (ranging from 18 to over 100°C) and tested the concept that membrane lipids provide a major biochemical basis for cellular bioenergetics of archaea and bacteria under stressful conditions. Reflecting the lower ion permeability of the ether-linked isoprenoidal lipids, we found that archaea dominate over bacteria in sediments of >50 °C. Moreover, a detailed examination of the molecular lipid species revealed a quandary: low membrane permeability concomitantly with increased fluidity is required for energy conservation of both archaea and bacteria under heat stress. For instance, bacterial fatty acids were found to increase chain length in concert with a higher degree of unsaturation at elevated sediment temperatures while archaeal tetraethers were observed to show a higher degree of bulking (e.g. methylation and H-shaped) and fluidity (i.e. cyclization) under elevated temperatures. In addition, our data indicate that strong intermolecular hydrogen bonding at the headgroup level of archaeal glycolipids and bacterial sphingolipids may provide ideal membrane stability to attain the required balance between low permeability and a more fluidized configuration. For example, sphingolipids may stabilize bacterial phospholipids into lipid domains, enabling bacteria to thrive in heated sediments under unfavorable thermodynamic conditions. The scientific marriage of lipidomics and bioenergetics described here provides a new dimension for understanding microbial life in natural environments.