ED51C-3443:
Using Next Generation Science Standards (NGSS) Practices to Address Scientific Misunderstandings Around Complex Environmental Issues

Friday, 19 December 2014
Timothy C Kenna, Lamont -Doherty Earth Observatory, Palisades, NY, United States and Margie Turrin, LDEO of Columbia University, Palisades, NY, United States
Abstract:
The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. 

Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as “What type of radioactive decay are we dealing with?”, “What is the potential half-life of the isotope?”, and “What are the pathways of transport of radioactivity?” allows students to evaluate a given condition, to predict an outcome and to better judge the seriousness of an overall situation.

While the problem solving skills students are taught are built around a specific case study, they can be broadly applied to a much wider range of topics, areas of study, and other aspects of their lives as new challenges arise, fitting the goals of NGSS.