SA12A-10:
Validation of High Frequency (HF) Propagation Prediction Models in the Arctic region
Abstract:
Despite the emergence of modern techniques for long distance communication, Ionospheric communication in the high frequency (HF) band (3-30 MHz) remains significant to both civilian and military users. However, the efficient use of the ever-varying ionosphere as a propagation medium is dependent on the reliability of ionospheric and HF propagation prediction models. Most available models are empirical implying that data collection has to be sufficiently large to provide good intended results. The models we present were developed with little data from the high latitudes which necessitates their validation.This paper presents the validation of three long term High Frequency (HF) propagation prediction models over a path within the Arctic region. Measurements of the Maximum Usable Frequency for a 3000 km range (MUF (3000) F2) for Resolute, Canada (74.75° N, 265.00° E), are obtained from hand-scaled ionograms generated by the Canadian Advanced Digital Ionosonde (CADI). The observations have been compared with predictions obtained from the Ionospheric Communication Enhanced Profile Analysis Program (ICEPAC), Voice of America Coverage Analysis Program (VOACAP) and International Telecommunication Union Recommendation 533 (ITU-REC533) for 2009, 2011, 2012 and 2013.
A statistical analysis shows that the monthly predictions seem to reproduce the general features of the observations throughout the year though it is more evident in the winter and equinox months. Both predictions and observations show a diurnal and seasonal variation. The analysed models did not show large differences in their performances. However, there are noticeable differences across seasons for the entire period analysed: REC533 gives a better performance in winter months while VOACAP has a better performance for both equinox and summer months. VOACAP gives a better performance in the daily predictions compared to ICEPAC though, in general, the monthly predictions seem to agree more with the observations compared to the daily predictions.