SA12A-09:
A Statistical Comparison of Coupled Thermosphere-Ionosphere Models

Monday, 15 December 2014: 12:00 PM
Lucas R Liuzzo, Georgia Institute of Technology Main Campus, Atlanta, GA, United States
Abstract:
The thermosphere-ionosphere system is a highly dynamic, non-linearly coupled interaction that fluctuates on a daily basis. Many models exist to attempt to quantify the relationship between the two atmospheric layers, and each approaches the problem differently. Because these models differ in the implementation of the equations that govern the dynamics of the thermosphere-ionosphere system, it is important to understand under which conditions each model performs best, and under which conditions each model may have limitations in accuracy. With this in consideration, this study examines the ability of two of the leading coupled thermosphere-ionosphere models in the community, TIE-GCM and GITM, to reproduce thermospheric and ionospheric quantities observed by the CHAMP satellite during times of differing geomagnetic activity. Neutral and electron densities are studied for three geomagnetic activity levels, ranging form high to minimal activity. Metrics used to quantify differences between the two models include root-mean-square error and prediction efficiency, and qualitative differences between a model and observed data is also considered. The metrics are separated into the high- mid- and low-latitude region to depict any latitudinal dependencies of the models during the various events. Despite solving for the same parameters, the models are shown to be highly dependent on the amount of activity level that occurs and can be significantly different from each other. In addition, in comparing previous statistical studies that use the models, a clear improvement is observed in the evolution of each model as thermospheric and ionospheric
constituents during the differing levels of activity are solved.