Application of Geostatistical Methods and Machine Learning for spatio-temporal Earthquake Cluster Analysis

Tuesday, 16 December 2014
Andreas M Schaefer1,2, James E Daniell1 and Friedemann Wenzel1, (1)Karlsruhe Institute of Technology, Geophysical Institute, Karlsruhe, Germany, (2)Ludwig Maximilian University of Munich, Munich, Germany
Earthquake clustering tends to be an increasingly important part of general earthquake research especially in terms of seismic hazard assessment and earthquake forecasting and prediction approaches. The distinct identification and definition of foreshocks, aftershocks, mainshocks and secondary mainshocks is taken into account using a point based spatio-temporal clustering algorithm originating from the field of classic machine learning. This can be further applied for declustering purposes to separate background seismicity from triggered seismicity.

The results are interpreted and processed to assemble 3D-(x,y,t) earthquake clustering maps which are based on smoothed seismicity records in space and time. In addition, multi-dimensional Gaussian functions are used to capture clustering parameters for spatial distribution and dominant orientations. Clusters are further processed using methodologies originating from geostatistics, which have been mostly applied and developed in mining projects during the last decades. A 2.5D variogram analysis is applied to identify spatio-temporal homogeneity in terms of earthquake density and energy output. The results are mitigated using Kriging to provide an accurate mapping solution for clustering features.

As a case study, seismic data of New Zealand and the United States is used, covering events since the 1950s, from which an earthquake cluster catalogue is assembled for most of the major events, including a detailed analysis of the Landers and Christchurch sequences.