OS51B-0977:
Improving an Inlet for Underwater Volatile Analyses

Friday, 19 December 2014
Emily Chua1,2, Anna Michel2, Scott D Wankel2 and Jason Kapit2, (1)Dalhousie University, Halifax, NS, Canada, (2)WHOI, Woods Hole, MA, United States
Abstract:
Although the deep ocean remains a challenging place to study, recent progress in technologies such as advanced in situ chemical sensors is beginning to broaden the scope of ocean exploration by enabling more comprehensive measurements at higher spatial and temporal resolutions. Such sensors are designed to be compatible with remotely and human operated vehicles and thus shed light on the geochemical composition of, and processes occurring in, seafloor environments. Among these sensors is a recently-developed in situ laser-based analyzer which utilizes Off-Axis Integrated Cavity Output Spectroscopy (ICOS). This instrument is capable of measuring stable carbon isotope ratios of methane (δ13CCH4), making it a powerful tool for assessing biogeochemical activity in the deep sea. With the aim of improving the sensitivity of this membrane inlet-based chemical sensor, a Membrane Inlet Dissolved Gas Extractor (MIDGE) was developed. Recent work on the MIDGE focused on improving design elements with the aim of enhancing gas transport through the membrane and reducing water vapour in the gas stream. This was accomplished by implementing a newly-designed membrane flow-through inlet geometry, testing a variety of membrane materials, and incorporating an acidification module to evolve dissolved inorganic carbon (DIC) to gaseous CO2. We will report on results from a September 2014 research cruise, in which the MIDGE ICOS is to be deployed as part of an interdisciplinary mission conducting the first-ever in situ chemical and stable isotopic exploration of two seafloor sites in the Caribbean: the Barbados Mud Volcanoes and Kick ‘em Jenny (KEJ). The goals of this project are to 1) use in situ measurements of methane and DIC carbon isotopes to enable biogeochemical exploration and mapping of methane seeps, and 2) measure the composition of bubble streams emanating from the crater of KEJ.