ED21D-3468:
Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses

Tuesday, 16 December 2014
Jeffrey G Ryan, University of South Florida, Tampa, FL, United States
Abstract:
The 2012 PCAST report identified the improvement of “gateway” science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible.

Examples include “MARGINS Mini-Lessons”, instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student participation in instrument-based data collection and interpretation. It is thus possible to model for students nearly the entire scientific process in introductory geoscience courses, allowing them to experience the excitement of “doing” science and thereby enticing more of them into the field.